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1 Functions of Bounded Variation and Distribution Func-
tions

1.1 Functions of bounded variation

First, let’s review the idea of functions of bounded variation.

Definition 1.1. Let −∞ < a < b < ∞. We say that f : [a, b] → R is of bounded
variation and write f ∈ BV([a, b]) if

sup
n

sup
xi

{
n−1∑
i=1

|f(xi)− f(xi−1)| : a = x0 < x1 < · · · < xn = b

}
<∞

We call this supremum the total variation norm and write it as ‖f‖TV([a,b]).

If f : [a, b]→ R, we write f ′ = f ′abs + f ′sing, where
∫
|f ′abs|+

∫
|f ′sing| <∞.

Definition 1.2. We sat that F : R→ C is of bounded variation if

sup
x0,x1

{
‖F‖TV([x0,x1]) : −∞ < x0 < x1 <∞

}
<∞.

Set TF (x) = supx0<x ‖F‖TV([x0,x]). This is a monotone increasing function. Observe
that F ∈ BV(R) means that limx→∞ TF (x) <∞.

We can normalize functions of bounded variation.

Definition 1.3. NBV(R) is the set of F ∈ BV(R) such that

1. F is right continuous.

2. limx→−∞ F (x) = 0.

Definition 1.4. If ν1, ν2 are two signed Borel measures on R of finite total mass, ν =
ν1 + iν2 is called a complex Borel measure.
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Remark 1.1. Signed measures can take the values ±∞, but we require them to be finite
here.

Proposition 1.1. If F ∈ NBV(R), then there exists a unique Borel complex measure µF
on R such that F (x) = µF ((−∞, x]). Conversely, every Borel complex measure is of the
form µF .

Theorem 1.1 (integration by parts). Let F,G ∈ BV([a, b]), where −∞ < a < b < ∞.
Assume F is right continuous and G is continuous. Then∫

(a,b]
F (x) dµG(x) +

∫
(a,b]

G(x) dµF (x) = F (b)G(b)− F (a)G(a).

Remark 1.2. One uses the notation∫
(a,b]

F (x)µG(x) =

∫
(a,b]

F (x) dG(x).

1.2 Distribution functions

Throughout this section, (X,M, µ) is a measure space, and 0 < p <∞.

Definition 1.5.

Lp(X,µ) =

{
F : X → C : F is measurable,

∫
X
|F |p dµ <∞

}
.

We write

‖F‖Lp =

(∫
X
|F (x)|p dµ(x)

)1/p

.

Remark 1.3. We will write Lp or Lp(µ) for Lp(X,µ).

Proposition 1.2 (Chebyshev’s inequality). Fix α > 0.∫
X
|F (x)|p dµ(x) ≥ αpµ({|F | > α}).

Proof.∫
X
|F (x)|p dµ(x) ≥

∫
{|F |>α}

|F (x)|p dµ(x) ≥
∫
{|F |≥α}

αp dµ(x) ≥ αpµ({|F | > α}).

Remark 1.4. If F ∈ Lp, then

sup
α>0

αpµ({|F | > α}) ≤ ‖F‖pLp <∞.

2



Definition 1.6. Let F : X → C be measurable. The distribution function of F is
λF : (0,∞)→ [0,∞] defined as λF (α) = µ({|F | > α}).

Proposition 1.3. Let F,G :→ C be measurable.

1. λF is monotone decreasing.

2. If |F | ≤ |G|, then λF ≤ λG.

3. If H := F +G, then λH(α) ≤ λF (α/2) + λG(α/2).

4. If Fn : X → C are measurable functions such that |Fn| ≤ |Fn+1| ≤ |F | for all n, and
limn |Fn| = |F |, then limn λFn = λF .

Proof. Define E(α, F ) = {|F | > α} for α > 0.

1. If 0 < α1 < α2, then E(α2, F ) ⊆ E(α1, F ). So

λF (α2) = µ(E(α2, F )) ≤ µ(E(α1, F )) = λF (α1).

2. If |F | ≤ |G|, then for α > 0, E(α, F ) ⊆ E(α,G).

3. If |H| > α, then |F | + |G| ≥ |F + G| = |H| > α. Then |F | > α/2 or |G| > α/2. So
E(α,H) ⊆ E(α/2, F ) ∪ E(α/2, G). So

µ(E(α,H)) ≤ µ(E(α/2, F )) + µ(E(α/2, G)).

4. Let (Fn)n be as above. Then λFn ≤ λFn+1 ≤ λF . Hence, limn λFn exists and is ≤ λF .
To get the reverse inequality, we use

E(α, F ) =

∞⋃
n=1

E(α, Fn).

To get the ⊆ containment, if |F (x)| > α, then there exists n such that |Fn(x)| > α.
Note that E(α, Fn) ⊆ E(α, Fn+1) ⊆ E(α, F ) for all n. Since µ is a measure,

µ(E(α, F )) = µ

( ∞⋃
n=1

E(α, Fn)

)
= lim

n
µ(E(α, Fn)).

Definition 1.7. Weak Lp, denoted Lp(µ,weak), os the set of measurable functions F :
X → C such that [F ]p <∞, where

[F ]p = sup
α∈(0,∞)

αpλF (α).

Remark 1.5. Lp(µ) ⊆ Lp(µ,weak).

These are not the same. What is the difference? We will show that being in weak Lp is
equivalent to

∫∞
0 αp−1λF (α) dα < ∞. So F ∈ Lp means that αp−1λF ∈ L1((0,∞)), while

F ∈ Lp(µ,weak) means that αpλF ∈ L∞(0,∞).
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