Math 245C Lecture 1 Notes

Daniel Raban

April 1, 2019

1 Functions of Bounded Variation and Distribution Functions

1.1 Functions of bounded variation

First, let's review the idea of functions of bounded variation.

Definition 1.1. Let $-\infty < a < b < \infty$. We say that $f : [a,b] \to \mathbb{R}$ is of **bounded** variation and write $f \in BV([a,b])$ if

$$\sup_{n} \sup_{x_{i}} \left\{ \sum_{i=1}^{n-1} |f(x_{i}) - f(x_{i-1})| : a = x_{0} < x_{1} < \dots < x_{n} = b \right\} < \infty$$

We call this supremum the **total variation norm** and write it as $||f||_{\text{TV}([a,b])}$.

If
$$f:[a,b]\to\mathbb{R}$$
, we write $f'=f'_{\rm abs}+f'_{\rm sing}$, where $\int |f'_{\rm abs}|+\int |f'_{\rm sing}|<\infty$.

Definition 1.2. We sat that $F: \mathbb{R} \to \mathbb{C}$ is of bounded variation if

$$\sup_{x_0, x_1} \left\{ \|F\|_{\text{TV}([x_0, x_1])} : -\infty < x_0 < x_1 < \infty \right\} < \infty.$$

Set $T_F(x) = \sup_{x_0 < x} ||F||_{\mathrm{TV}([x_0, x])}$. This is a monotone increasing function. Observe that $F \in \mathrm{BV}(\mathbb{R})$ means that $\lim_{x \to \infty} T_F(x) < \infty$.

We can normalize functions of bounded variation.

Definition 1.3. NBV(\mathbb{R}) is the set of $F \in BV(\mathbb{R})$ such that

- 1. F is right continuous.
- 2. $\lim_{x \to -\infty} F(x) = 0$.

Definition 1.4. If ν_1, ν_2 are two signed Borel measures on \mathbb{R} of finite total mass, $\nu = \nu_1 + i\nu_2$ is called a **complex Borel measure**.

Remark 1.1. Signed measures can take the values $\pm \infty$, but we require them to be finite here.

Proposition 1.1. If $F \in NBV(\mathbb{R})$, then there exists a unique Borel complex measure μ_F on \mathbb{R} such that $F(x) = \mu_F((-\infty, x])$. Conversely, every Borel complex measure is of the form μ_F .

Theorem 1.1 (integration by parts). Let $F, G \in BV([a,b])$, where $-\infty < a < b < \infty$. Assume F is right continuous and G is continuous. Then

$$\int_{(a,b]} F(x) d\mu_G(x) + \int_{(a,b]} G(x) d\mu_F(x) = F(b)G(b) - F(a)G(a).$$

Remark 1.2. One uses the notation

$$\int_{(a,b]} F(x)\mu_G(x) = \int_{(a,b]} F(x) \, dG(x).$$

1.2 Distribution functions

Throughout this section, (X, \mathcal{M}, μ) is a measure space, and 0 .

Definition 1.5.

$$L^p(X,\mu) = \left\{ F : X \to \mathbb{C} : F \text{ is measurable, } \int_X |F|^p d\mu < \infty \right\}.$$

We write

$$||F||_{L^p} = \left(\int_{Y} |F(x)|^p d\mu(x)\right)^{1/p}.$$

Remark 1.3. We will write L^p or $L^p(\mu)$ for $L^p(X,\mu)$.

Proposition 1.2 (Chebyshev's inequality). Fix $\alpha > 0$.

$$\int_X |F(x)|^p d\mu(x) \ge \alpha^p \mu(\{|F| > \alpha\}).$$

Proof.

$$\int_X |F(x)|^p \, d\mu(x) \ge \int_{\{|F| > \alpha\}} |F(x)|^p \, d\mu(x) \ge \int_{\{|F| > \alpha\}} \alpha^p \, d\mu(x) \ge \alpha^p \mu(\{|F| > \alpha\}). \quad \Box$$

Remark 1.4. If $F \in L^p$, then

$$\sup_{\alpha>0} \alpha^p \mu(\{|F|>\alpha\}) \le ||F||_{L^p}^p < \infty.$$

Definition 1.6. Let $F: X \to \mathbb{C}$ be measurable. The **distribution function** of F is $\lambda_F: (0, \infty) \to [0, \infty]$ defined as $\lambda_F(\alpha) = \mu(\{|F| > \alpha\})$.

Proposition 1.3. Let $F, G : \to \mathbb{C}$ be measurable.

- 1. λ_F is monotone decreasing.
- 2. If $|F| \leq |G|$, then $\lambda_F \leq \lambda_G$.
- 3. If H := F + G, then $\lambda_H(\alpha) \leq \lambda_F(\alpha/2) + \lambda_G(\alpha/2)$.
- 4. If $F_n: X \to \mathbb{C}$ are measurable functions such that $|F_n| \le |F_{n+1}| \le |F|$ for all n, and $\lim_n |F_n| = |F|$, then $\lim_n \lambda_{F_n} = \lambda_F$.

Proof. Define $E(\alpha, F) = \{|F| > \alpha\}$ for $\alpha > 0$.

1. If $0 < \alpha_1 < \alpha_2$, then $E(\alpha_2, F) \subseteq E(\alpha_1, F)$. So

$$\lambda_F(\alpha_2) = \mu(E(\alpha_2, F)) \le \mu(E(\alpha_1, F)) = \lambda_F(\alpha_1).$$

- 2. If $|F| \leq |G|$, then for $\alpha > 0$, $E(\alpha, F) \subseteq E(\alpha, G)$.
- 3. If $|H| > \alpha$, then $|F| + |G| \ge |F + G| = |H| > \alpha$. Then $|F| > \alpha/2$ or $|G| > \alpha/2$. So $E(\alpha, H) \subseteq E(\alpha/2, F) \cup E(\alpha/2, G)$. So

$$\mu(E(\alpha, H)) \le \mu(E(\alpha/2, F)) + \mu(E(\alpha/2, G)).$$

4. Let $(F_n)_n$ be as above. Then $\lambda_{F_n} \leq \lambda_{F_{n+1}} \leq \lambda_F$. Hence, $\lim_n \lambda_{F_n}$ exists and is $\leq \lambda_F$. To get the reverse inequality, we use

$$E(\alpha, F) = \bigcup_{n=1}^{\infty} E(\alpha, F_n).$$

To get the \subseteq containment, if $|F(x)| > \alpha$, then there exists n such that $|F_n(x)| > \alpha$. Note that $E(\alpha, F_n) \subseteq E(\alpha, F_{n+1}) \subseteq E(\alpha, F)$ for all n. Since μ is a measure,

$$\mu(E(\alpha, F)) = \mu\left(\bigcup_{n=1}^{\infty} E(\alpha, F_n)\right) = \lim_{n} \mu(E(\alpha, F_n)).$$

Definition 1.7. Weak L^p , denoted $L^p(\mu, \text{weak})$, os the set of measurable functions $F: X \to \mathbb{C}$ such that $[F]_p < \infty$, where

$$[F]_p = \sup_{\alpha \in (0,\infty)} \alpha^p \lambda_F(\alpha).$$

Remark 1.5. $L^p(\mu) \subseteq L^p(\mu, \text{weak})$.

These are not the same. What is the difference? We will show that being in weak L^p is equivalent to $\int_0^\infty \alpha^{p-1} \lambda_F(\alpha) d\alpha < \infty$. So $F \in L^p$ means that $\alpha^{p-1} \lambda_F \in L^1((0,\infty))$, while $F \in L^p(\mu, \text{weak})$ means that $\alpha^p \lambda_F \in L^\infty(0,\infty)$.